试论求解一阶常微分方程的积分因子文献综述

 2022-08-05 02:08

试论求解一阶常微分方程的积分因子

一、前言:

常微分方程是数学分析或基础数学的一个组成部分,在物理学,计算机科学,以及生物系统研究中都有广泛的应用,受到了科学技术领域的普遍关注和高度重视。但许多常微分方程教材都存在明显的对各类型方程求解的孤立技巧和方法的汇编倾向,许多内容的联系比较松散。一阶常微分方程是非常重要的一类方程,它作为常微分方程的基础内容之一,具有完整的系统理论和丰富的实际背景。目前一般的一阶微分方程是没有初等解法的,本文就从介绍有初等解法的一阶微分方程的类型入手,总结出它们的求解方法及它们解法之间的关系。

二、常微分方程的发展史:

从17世纪末开始,摆的运动、弹性理论以及天体力学等实际问题的研究引出了一系列常微分方程,这些问题在当时以挑战的形式被提出而在数学家之间引起激烈的争论。

在18世纪,常微分方程已成为有自己的目标和方向的新数学分支。最先考虑微分方程解的存在性问题的数学家是柯西,18世纪20年代,他给出了第一个存在性定理。

19世纪后半叶,常微分方程的研究在两个大的方向上开拓了新局面。第一个方向是与奇点问题相联系的常微分方程解析理论,它是由柯西开创的。另一个崭新的方向,也可以说是微分方程发展史上的又一个转折点,就是定性理论,它完全是庞加莱的独创。

庞特里亚金提出结构稳定性概念,要求在微小扰动下保持相图不变,使动力系统的研究向大范围转化。动力系统的研究由于拓扑方法和分析方法的有力结合而取得了重要进步,借助于现代计算机模拟又引发具有异常复杂性的混沌、分叉、分形理论这方面的研究涉及到众多的数学分支。

20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组)。70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程。从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解。常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数。偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”。在很长一段时间里,人们致力于“求通解”。但是以下三种原因使得这种“求通解”的努力,逐渐被放弃。第一,常微分方程中能求得通解的方程显然是很少的。在常微分方程方面,一阶方程中可求得通解的,除了线性方程、可分离变量方程和用特殊方法变成这两种方程的方程之外,为数是很小的。高阶方程中,线性方程仍可以用叠加原理求解,即n阶齐次方程的通解是它的n个独立特解的线性组合,其系数是任意常数。非齐次方程的通解等于相应齐次方程的通解加上非齐次方程的特解,这个特解并且可以用常数变易法通过求积分求得。求齐次方程的特解,当系数是常数时可归结为求一代数方程的根,这个代数方程的次数则是原方程的阶数;当系数是变数时,则只有二种极特殊的情况(欧拉方程、拉普拉斯方程)可以求得。至于非线性高阶方程则除了少数几种可降阶情形就是这几种情形都有的一个方程)之外,可以求得通解的为数就更小了。n阶方程也可以化为一阶方程组(未知函数的个数和方程的个数都等于 n)早已为人们所知,并且在此后起着一定作用,但对通解的寻求仍无济于事。 在偏微分方程方面,一阶方程可以归结为一阶常微分方程组,但是如上所述,一阶常微分方程组可以求得通解的还是很少的。高阶方程中几乎只有少数二阶方程可以求得通解。在线性情形,推广常数变易法则是杜阿美原理。

剩余内容已隐藏,您需要先支付 10元 才能查看该篇文章全部内容!立即支付

以上是毕业论文文献综述,课题毕业论文、任务书、外文翻译、程序设计、图纸设计等资料可联系客服协助查找。